Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history.
نویسندگان
چکیده
Segmental duplications (SDs) are operationally defined as >1 kb stretches of duplicated DNA with high sequence identity. They arise from copy number variants (CNVs) fixed in the population. To investigate the formation of SDs and CNVs, we examine their large-scale patterns of co-occurrence with different repeats. Alu elements, a major class of genomic repeats, had previously been identified as prime drivers of SD formation. We also observe this association; however, we find that it sharply decreases for younger SDs. Continuing this trend, we find only weak associations of CNVs with Alus. Similarly, we find an association of SDs with processed pseudogenes, which is decreasing for younger SDs and absent entirely for CNVs. Next, we find that SDs are significantly co-localized with each other, resulting in a highly skewed "power-law" distribution and chromosomal hotspots. We also observe a significant association of CNVs with SDs, but find that an SD-mediated mechanism only accounts for some CNVs (<28%). Overall, our results imply that a shift in predominant formation mechanism occurred in recent history: approximately 40 million years ago, during the "Alu burst" in retrotransposition activity, non-allelic homologous recombination, first mediated by Alus and then the by newly formed CNVs themselves, was the main driver of genome rearrangements; however, its relative importance has decreased markedly since then, with proportionally more events now stemming from other repeats and from non-homologous end-joining. In addition to a coarse-grained analysis, we performed targeted sequencing of 67 CNVs and then analyzed a combined set of 270 CNVs (540 breakpoints) to verify our conclusions.
منابع مشابه
I-44: Mutagenesis during Embryogenesis
We developed several novel tools to genome wide screen for CNVs and SNPs in single cells. When applied to cleavage stage embryos from young fertile couples we discovered, unexpectedly, an extremely high incidence of chromosomal instability, a hallmark of tumorigenesis (Vanneste et al., Nature Medicine, 2009; Vanneste et al., Hum.Reprod., 2011). Not only mosaicisms for whole chromosome aneuploid...
متن کاملI-38: Chromosome Instability in The Cleavage Stage Embryo
Recently, we demonstrated chromosome instability (CIN) in human cleavage stage embryogenesis following in vitro fertilization (IVF). CIN not necessarily undermines normal human development (i.e. when remaining normal diploid blastomeres develop the embryo proper), however it can spark a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. To s...
متن کاملThe genomic architecture of segmental duplications and associated copy number variants in dogs.
Structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of segmental duplications and associated copy number variants (CNVs) in the modern domesticated dog, Canis familiaris, which exhibits considerable morphological, physiological, and behavioral variation. Through computational analyses of the...
متن کاملO-38: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کاملI-44: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 18 12 شماره
صفحات -
تاریخ انتشار 2008